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Abstract 
 
Monte Carlo simulation methods are used to compute critical values for spatial unit 
root tests in the SAR model estimated from spatial cross-section data. We also 
compute critical values for residual-based spatial cointegration tests for cross-section 
data that happen to be spatially nonstationary. We show that edge effects in spatial 
lattices affect the asymptotics of the proposed tests. 
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1. Introduction 

Fingleton (1999) has placed the issue of spurious regression on the agenda of spatial 

econometrics. He pointed out that if the data generating processes (DGP) for spatial 

cross section data happen to contain a spatial unit root, the estimated regression 

coefficients from such data may be spurious. Indeed, they will be spurious if the 

regression residuals contain a spatial unit root. If, on the other hand, the residuals do 

not contain a spatial unit root, the data are spatially cointegrated and the estimated 

regression coefficients are not spurious. This definition of spatial cointegration is in 

the spirit of Engle and Granger (1987) who first developed the concept for time eries 

data. 

 Strictly speaking if the residuals contain a spatial unit root, the estimated 

regression coefficients will be “nonsense” rather than “spurious”. These terms were 

invented by Yule for time series data. The spurious regression phenomenon arises 

when time series happen to be independent random walks with drift, in which case the 

spurious regression coefficient is equal to the ratio of the drift parameters. The 

nonsense regression phenomenon (Yule 1926) arises when the time series are 

independent, driftless random walks. Spurious regression is induced by the fact that 

the means of the time series increase or decrease with time. Nonsense regression is 

induced by the fact that their variances increase with time1.  

 The spatial DGPs investigated by Fingleton were in fact driftless random 

walks, so his topic was spatial nonsense regression rather than spatial spurious 

regression. The latter would arise if the DGPs contained spatial drift induced, for 

example, by the distance from the central business district in urban economic models. 

Spatial nonsense regression, on the other hand, is not induced by spatial drift, but by 

unit roots in the spatial DGPs as demonstrated by Fingleton. 

 Fingleton did not, however, provide a spatial cointegration test to determine 

whether parameter estimates are nonsense or not. He pointed out that if Moran’s I 

indicates that the residuals are highly spatially correlated, the parameter estimates are 

more likely to be nonsense. Taking up a suggestion of Fingleton’s, Lauridsen and 

Kosfeld (2006, 2007) proposed a two-step LM strategy to test for spatial 

cointegration. We show that their strategy is based on a conceptual error and is 

therefore invalid. 

                                                 
1 See e.g. Hendry (1995) pages 122-133 for further discussion. 
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 Our main purpose is therefore to propose a valid spatial cointegration test, 

which may be used to determine whether parameter estimates obtained from spatial 

cross section data are nonsense. However, first it is necessary to propose a test 

statistic to determine whether the DGPs contain spatial unit roots. We begin by 

developing spatial “Dickey - Fuller” statistics where according to the null hypothesis 

there is a spatial unit root. We use Monte Carlo simulation to determine the 

distribution of the SAR coefficient when there is a spatial unit root. We obtain the 

spatial analogue to the Dickey - Fuller test statistic developed for time series data. 

This spatial unit root test may be used to determine the order of spatial integration of 

spatial data. If the data are spatially integrated to order zero, the nonsense regression 

issue does not arise. If, however, the data are spatially integrated to order 1, the 

nonsense regression issue arises. 

 We use Monte Carlo simulation to develop spatial cointegration test statistics, 

which parallel the cointegration tests developed by Engle and Granger (1987) for time 

series. The nonsense regression phenomenon implies that there is a spatial unit roots 

in the regression residuals. We calculate the distribution of the SAC coefficient for the 

regression residuals under the null hypothesis that they contain a spatial unit root.                  

 

2. The Lauridsen – Kosfeld Test 

We begin by restating the spatial cointegration test proposed by Lauridsen and 

Kosfeld (2006). We show that the KL test is based on a conceptual error. Finally, we 

show how if the KL test was applied to time series, the test would be invalid. 

The hypothesis of interest is assumed to be: 
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where j refers to region, ju~  denotes the average value of u among the neighbor’s of j 

and ρ is the SAC coefficient. The DGPs for Y and X are assumed to be: 
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where ε and e are iid random variables. A variable Z is defined to be spatially 

integrated of order d when its d'th spatial difference is spatially stationary, hence Z ~ 

SI(d). Therefore Y ~ SI(1) and X ~ SI(1) when ρY = ρX = 1. If u ~ SI(1) because ρ = 1 

equation (1) is a nonsense regression, which happens if ε and e are independent for all 
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spatial leads and lags. If, however, u ~ SI(0) because ρ < 1 equation (1) is not 

nonsense because ε and e must be dependent. 

 If ρ = 1 LK suggest that equation (1) be spatially differenced: 
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Their contention is that if v` is spatially uncorrelated, equation (1) is nonsense. If v` is 

spatially correlated then equation (1) is spatially cointegrated.  

Notice that equation (5) is equivalent to a regression of εj on ej since from 

equation (3) y = ε and from equation (4) x = e. If ε and e are not independent, 

equation (1) must be cointegrated regardless of whether or not v` is spatially 

autocorrelated. Therefore KL’s proposed test is incorrect. They are also incorrect in 

assuming that ββ ′= ˆˆ . If indeed equation (1) is a nonsense regression plim 0ˆ ≠β  

while plim 0ˆ =′β . 

The invalidity of KL's proposed test may be further highlighted by applying it 

to time series data. The data generating processes (DGP) for Y and X are assumed to 

be first-order driftless random walks, i.e. they are I(1) variables: 
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Y is regressed on X (or X on Y) as in equation (8): 

)8(ttt uXY += θ  

Since the DGPs are entirely independent the true value of θ is zero. However, OLS 

estimates of θ are "nonsense" because plim 0ˆ ≠θ  and the t-statistic of θ̂  tends to 

infinity2 at the rate of root T. In nonsense regressions u ~ I(1). The cointegration test 

due to Engle and Granger (1987) tests whether u is I(1) or not. 

Translating KL's proposal to time series is equivalent to applying the 

following two-stage procedure. First test the hypothesis that ρ = 0 (instead of ρ = 1) in 

equation (9): 

                                                 
2 See e.g. Hendry (1995) p126. The nonsense regression phenomenon also arises when equations (6) 
and (7) are autoregressive. 
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)9(1 ttt uu ωρ += −   

If ρ ≠ 0, estimate equation (8) in first differences: 

)10(` ttt vXY +∆=∆ θ  

KL make three claims. i) If u is serially uncorrelated then Y and X are cointegrated. 

ii) If u is serially correlated but v is serially independent, Y and X are not 

cointegrated. iii) If both u and v are serially correlated Y and X are cointegrated.   

The first claim is correct because if u is serially uncorrelated u ~ I(0). The other 

claims are incorrect because they are based on a conceptual error, which is to assume 

that `ˆlimˆlim θθ pp = . The DGPs in equations (6) and (7) mean that in equation (8) 

0ˆlim ≠θp due to the nonsense regression phenomenon, whereas in equation (10) 

plim `θ̂  = 0 because ∆Y and ∆X are stationary and ε and e are independent at all leads 

and lags. Indeed, the latter means that equation (10) is equivalent to v = ε. In short, v 

is not relevant to cointegration testing, which explains why cointegration tests for 

time series are based on u and not on v.   

 

3. Spatial Difference Equations and Impulse Responses 

In this section we introduce stochastic spatial difference equations. We show that 

spatial unit roots induce spatial impulse responses that do not die out with distance. If 

time series data are stationary, the impulse responses die out with time so that 

eventually history forgets itself. If, however, time series data are nonstationary, the 

impulse responses do not die out, history never forgets itself, and random shocks that 

occurred in the remote past affect the current value of the time series as if they had 

just occurred. If spatial data are stationary, shocks that occurred in the remote distance 

from region j have no effect on what happens in region j. If, however, spatial data are 

nonstationary, shocks that occurred in the remote distance affect region j as if they 

occurred in region j. In this case space "never forgets itself", and distance is of no 

consequence.  

 The analogy between space and time is, however, incomplete because time is 

unidirectional; it only moves forward. Space, on the other hand, is multidirectional 

because what happens in region j is affected by neighbors to the north, south, east and 

west. The econometric analysis of time series would be vastly more complicated if the 

past depended on the future and not just the future on the past. Also, whereas time 
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may have a natural beginning, space does not have a natural starting point. In a flat 

world, regions on the edge have fewer neighbors, but this is a different matter. In a 

round world, however, there are no edge regions. Finally, if the world does not come 

to an end, the future is infinite, whereas space (on earth) is naturally finite. 

 We begin by assuming that space is an infinite line that has no beginning and 

end. Spatial units have neighbors on two sides only. This turns out to be equivalent to 

time series where the future and past are mutually dependent. Indeed, we use linear 

stochastic difference equation theory with forward and backward solutions to capture 

the two-way mutual dependence between neighbors. In this case we are able to obtain 

analytical solutions for the spatial impulse responses. However, we are unable to 

obtain analytical solutions for the more relevant case in which space is four 

dimensional, i.e. there is north and south, as well as east and west. In this case we use 

Matlab to calculate the spatial impulse responses. It turns out that these impulse 

responses are affected by how edge effects are handled. 

3.1 Lateral Space             

Spatial units are assumed to be located laterally (along a line representing west 

and east or north and south) so that each region has a neighbor on either side. 

Spillovers are assumed to occur between immediate neighbors. The SAR model in 

this case is: 

)11()( 11 jjjj uYYY ++= −+α   

Where α denotes the spatial spillover coefficient and u is an iid random variable with 

variance equal to σu
2. Equation (11) is a 2nd order stochastic spatial difference 

equation. The main difference between spatial and temporal difference equations is 

that whereas time only moves forward so that Yt depends upon Yt-1 but not the other 

way round, in spatial data Yj depends upon Yj-1 which in turn depends on Yj.  

Let S denote a spatial lag operator such that SiYj = Yj-i where i may be positive 

(east of j) or negative (west of j). Multiplying equation (11) by S and rewriting the 

result in terms of the spatial lag operator gives: 

)12()( 1
2

−−=+− jj uYSS αα  

The characteristic equation of equation (12) is: 

)13(02 =+− αλαλ  

If α > 0 the real roots of equation (13), λ1 and λ2, are positive and are reciprocally 

related because λ1 = 1/λ2. The roots will be complex if 4α2 > 1. When α = ½ both 
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roots are equal to unity. When α < ½ one root is positive and less than one while the 

other is positive and greater than one. Therefore if λ1 < 1 λ2 = 1/λ1 > 1. Since (1 - 

λ1S)(1 - λ2S) = (α - S + αS2) the general solution for Yj to equation (12) is: 
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Using partial fractions we note that: 
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We also note that: 
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Equation (16) operates eastwards since i ≥ 0 and equation (17) operates westwards 

since i < 0. Substituting equations (15), (16) and (17) into equation (14) gives: 
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Equation (18) is the spatial Wold representation of equation (11) since it expresses Yj 

in terms of the stochastic shocks in all spatial units to the east and west of j as well as 

in j itself. Equation (18) is also the spatial impulse response function. Because λ1 < 1 

equation (18) states that closer spatial units to j have a greater effect on j than more 

remote units. The spatial impulse responses are symmetric since uj+i has the same 

effect on Yj as uj-i. 
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 Infinitely remotespatial units have asymptotically no effect on j. If, however, α = ½, 

λ1 = 1 in which case the spatial impulses do not die away with distance.  

 Setting i = 0 in equation (18) solves for the effect of uj on Yj : 
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which is positive and exceeds 1 if λ1 < 0.618 which from equation (13) happens when 

α < 0.447.  
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According to equation (18) E(Yj) = 0 because the expected value of the u's are 

all zero by definition. Therefore, the first moment is independent of j, even in the case 

where λ1 = 1 (α = ½). However, the variance of Y is not independent of j when λ1 = 

1. From equation (18) the asymptotic variance is equal to: 
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which is finite when 0 ≤ λ1 < 1. If, however, λ1 = 1 (α = ½) the asymptotic variance is 

infinite. This happens because the spatial impulses in equation (18) do not vary 

inversely with distance (i) when λ1 = 1. Therefore a remote shock has the same effect 

on region j as if it happened in region j itself. This parallels temporal nonstationarity 

where historically remote shocks have the same effect on time t as a current shock. 

3.2 Bilateral Space 

When space is lateral and the number of neighbors (n) is two, we saw that the 

SAR coefficient inducing a spatial unit root is α* = ½ = 1/n. When space is 

multilateral and spatial units have more than two neighbors the critical value for α 

that gives rise to a spatial unit root is α* = 1/n. If space is a rook lattice so that space 

is bilateral each spatial unit has 4 neighbors in which case α* = ¼. If space is a queen 

lattice space would be trilateral. We focus here on bilateral space. Multilateral 

extensions require exponentially more computing power.  

The bilateral counterpart to equation (11) may be written familiarly as the 

SAR model: 

)22(uWYY += α     

where W is an NxN matrix with elements wjk = 1 if j and k are neighbors and wjk = 0 

otherwise. Y and u are vectors of length N2. Following Fingleton (1999), Lauridsen 

and Kosfeld normalize so that the sum of the weights (w) is unity, and normalize α = 

1. This means that at the corners of the lattice where there are two neighbors wjk = ½ 

and at the edge where there are three neighbors wjk = ⅓, which overstates the true 

weight. We therefore prefer to normalize wjk =1 and α = ¼ because it does not 

artificially increase spatial spillover at the corners and edge of the lattice.  

     The Wold representation of equation (22) is: 
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and the spatial impulse responses are: 
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We expect ajj to vary directly with the number of spatial units because this 

gives rise to more scope for spatial spillover, and we expect ajk to vary inversely with 

the distance between j and k. If, however, there is a spatial unit root, the impulses ajk 

will not tend to zero as the distance between j and k tends to infinity.  Unfortunately 

when space is bilateral analytical expressions for the spatial impulse responses are 

unobtainable. We therefore use Matlab to calculate A for NxN lattices in which n = 4 

and α* = ¼. To investigate asymptotics we ideally wish to let N tend to infinity, but 

this is not feasible. We therefore make N as large as practically possible given 

computing constraints. 

 Because N is finite A is inevitably distorted by edge effects. Spatial units on 

the edge are less exposed to spatial spillover because they have only three neighbors 

instead of four. Spatial units in the four corners of the lattice only have two neighbors. 

These edge effects inevitably distort the calculation of A. We expect ajj and ajk to be 

greater the closer is j to the epicenter j* because there is more scope for spatial 

interaction in the center than at the periphery. We do not expect ajk to be symmetrical 

unless j = j* because only at the epicenter is the distance to the edge of the square 

lattice the same in all four directions. 
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Figure 1 

In Figure 1 we plot impulse responses for aj*k when N = 31. The impulse 

responses are measured along the vertical and Euclidean distance from j* is measured 

along the horizontal. The 15th value of k is on the edge of the lattice and the 30th value 

is at the corner of the lattice. Figure 1 shows, as expected, that ajj varies directly with 

α, ajk varies inversely with k, and the impulse responses die away more slowly the 

larger is α. A perhaps surprising result is that when α = α* = ¼ the impulse responses 

die away more slowly but do not reach zero. This happens because there is an edge to 

the lattice. 
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Figure 2 

In Figure 2 we plot the diagonal of A to show, as expected, that ajj varies 

directly with α. This is because ajj reflects the feedback or echo from neighbors from 

shocks in a given region. The strength of this “echo” naturally varies directly with α. 

Figure 2 also shows that when α < α* the edge effect does not distort the force of the 

echo because in any case the echo tends to die away. Hence ajj does not depend upon 

distance from the epicenter, except at the edge of the lattice. When α = α*, however, 

matters are quite different. Figure 2 shows that in this case ajj varies inversely with 

distance from the epicenter. Had there been no edge the effect at the epicenter would 

have been infinity because the echo carries on for ever, and the effect elsewhere 

would have been infinite too. Indeed, when N is infinity there is no meaning to the 

epicenter because the lattice has no borders. 

3.3. Variances in Bilateral Space 

When space is lateral there is an analytical expression for the variance of Y, see 

equation (21). When space is bilateral equation (23) implies that the variance-

covariance matrix of Y is equal to: 

)26(`2 AAuσ=Σ  
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Figure 3 

We follow Fingleton (1999) and calculate3 the average variance of Y as N increases4. 

The results are plotted on Figure 3, which shows that as α increases towards α* = ¼, 

the variance of Y varies directly with N. Figure 3 clearly establishes that the variance 

depends upon N as α increases towards α*. However, when α < α*, the variance does 

not depend upon N, as should be the case if the data are stationary.            

 

4.  Spatial Unit Root Tests5 

We set α = α* = ¼ in equation (21) and generate 10,000 artificial data sets for Y by 

using the Meersen Twister6 for drawing pseudo random numbers for the u’s from a 

standard normal distribution for given N. We use these synthetic data sets to estimate 

by maximum likelihood 10,000 SAR models. The distribution of the 10,000 estimates 

of the SAR coefficient is plotted in Figure 4.  

                                                 
3 Unlike Fingleton we do not fix Yj* at the epicenter, we use 10,000 Monte Carlo simulations instead of 
1,000, and we do not arbitrarily reduce w on the edge of the lattice.  
4 We calculate N-2trace(Σ). 
5  Spatial unit root tests should not be confused with temporal unit root tests for spatially dependent 
data as in Baltagi, Bresson and Pirrote (2007)  
6 The Meersen Twister is the default in Matlab. We are currently investigating other pseudo random 
number generators such as Halton sequences. We are also investigating the sensitivity of the 
computations to the number of Monte Carlo trials. 



 13

 

Figure 4 

Not surprisingly the mean estimate of the SAR coefficient is almost 0.25 (0.2498) and 

the mode is around 0.25 (0.2520). However, some of the estimates exceed 0.25, while 

others are less than 0.25. The distribution is clearly skewed to the left. Indeed, this 

result is qualitatively similar to its time series counterpart7. We truncate the 

distribution from the right since SAR estimates that are equal to or greater than 0.25 

imply a spatial unit root, and calculate the percentiles for the SAR coefficient from 

the truncated distribution. Since the probability of obtaining an estimate of α greater 

or equal to 0.25 is 0.4776 truncate Figure 4 from the right accordingly, i.e. the area 

that is cut off is A=47.76% of the total area. According to Figure 4, when N = 20 

there is a 95 percent chance of getting a SAR coefficient that is greater than SAR* = 

0.243. Therefore, the critical value for the SAR coefficient is 0.243 at p = 0.05. 

 In Table 1 we report SAR* for different values of N and p8. If the estimated 

SAR coefficient is greater than SAR* the spatial cross-section data contain a spatial 

unit root. For example, when N = 10 and p = 0.05 SAR* is 0.225. If SAR is greater 

than SAR* we cannot reject the null hypothesis of a spacial unit root. Therefore, if the 

SAR estimate is, for example, 0.2 we may reject the hypothesis of a spatial unit root. 

SAR* naturally varies inversely with p and it varies directly with N, or the sample 

size.      

                                                 
7 See Hendry (1995) page 104. 
8 The critical values reported in Tables 1 – 5 are seed dependent and are therefore random. We have yet 
to calculate their standard errors, which involves repeated seeding of the 10,000 trials.  
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Table 1 Spatial Unit Root Test Statistics 

 N 

p 5 10 20 

0.01 0.071 0.206 0.24 

0.05 0.139 0.225 0.243 

0.1 0.161 0.23 0.244 

 

 The critical values in Table 1 are conceptually similar to the Z = T(ρ - 1) 

statistic that is (infrequently) used for testing unit roots in time series data, where T is 

the sample size and ρ is the AR coefficient, which parallels the SAR coefficient α. 

The number of spatial units in the sample is N2 in which case Z = N2(4α* - 1). For 

example, when N = 10 and p = 0.05 Table 1 implies that Z = -10. Note that when T = 

100 the critical value of Z for a driftless random walk is -7.9. We compare with the 

driftless case because there is no spatial drift in the SAR model. 

 In time series the Dickey-Fuller statistic has proved much more popular than 

the Z statistic even though the two statistics are equivalent. The DF statistic is equal to 

ρ - 1 divided by its standard error and consequently has the dimension of a t-statistic. 

We may therefore express the critical values reported in Table 1 as “spatial Dickey-

Fuller” equivalents, or SDF statistics, which are reported in Table 2. 

Table 2 Spatial Dickey-Fuller Statistics 

 N 

P 5 10 20 

0.1 -1.04 -0.98 -1.21 

0.05 -1.22 -1.14 -1.32 

0.01 -1.62 -1.49 -1.61 

 

The critical value of the DF statistic when T = 100 and p = 0.05 is -1.95. Table 2 

suggests that the spatial counterpart to the DF statistic is smaller in absolute value 

than its temporal counterpart. Of course, these statistics are not strictly comparable 

because time only moves forward whereas space moves in all four directions in a 

square lattice.  

 

5. Spatial Cointegration Tests 
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Fingleton (1999) observed that if the DGPs for Y and X contain spatial unit roots, 

estimates of β in equation (1) may be “nonsense”. If β = 0 in equation (1) and Y 

~SI(1) then it must be the case that u ~ SI(1) so that ρ = 1 in equation (2). If, however, 

Y and X are spatially cointegrated u must be stationary in which case ρ < 1.  

 We generate 10,000 artificial datasets for Y and X with α = ¼ with β =0 in 

each random draw. We use these datasets to generate 10,000 OLS estimates of β. The 

distribution of these estimates is plotted in Figure 5 for N = 20. 

 

Figure 5 

Not surprisingly, the mode is close to zero (-0.0088) and the mean is close to zero 

(0.006) as well. However, there are positive as well as negative estimates of β. Our 

10,000 regressions generate residuals which are used to generate 10,000 estimates of 

ρ, which are plotted on Figure 6.  
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Figure 6 

The mode in Figure 6 is 0.2527 and the mean is close to 0.25 (0.2482). However, 

there are estimates that are below and above 0.25. As in section 4 we truncate Figure 

6 from the right at 0.25 and calculate the probability that ρ < 0.25. The area that is cut 

off is A=30.14% of the overall area. When p = 0.05 Figure 6 implies that ρ* = 0.241. 

If ρ < ρ* the OLS estimate of β is not nonsense in which event Y and X are spatially 

cointegrated. If, on the other hand,  ρ > ρ* we cannot reject the hypothesis that the 

residuals contain a unit root, in which event the estimate of β is “nonsense” and Y and 

X are not spatially cointegrated.   

Table 3 Spatial Cointegration Test Statistics 

 N 

P 5 10 20 

0.01 0.038 0.198 0.238 

0.05 0.101 0.217 0.241 

0.1 0.132 0.224 0.243 

k = 2  

Table 3 records the critical value of ρ* in the bivariate case (k = 2). Note that ρ* in 

Table 3 is typically smaller than α* in Table 1. This discrepancy parallels its temporal 

counterpart where, due to the loss in degrees of freedom, the univariate DF statistic is 

more negative than its multivariate counterpart for cointegration. Therefore because k 
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= 2 ρ* must be less than α*. For example when N = 10 and p = 0.05 ρ* is 0.217 

whereas α* is 0.225. 

   Table 4 records critical values of ρ* for larger values of k when p =0.05. Not 

surprisingly ρ* varies directly with N because there are more degrees of freedom and 

it varies inversely with k because there are fewer degrees of freedom. The SDF 

counterparts to Table 4 are given in Table 5. The SDF statistics in Table 5 are 

naturally more negative than their univariate counterparts in Table 2 due to the 

reduction in degrees of freedom.  

Table 4 Spatial Cointegration Test Statistics (k > 2) 

 N 

K 5 10 20 

3 0.069 0.205 0.239 

4 0.035 0.197 0.238 

p = 0.05 

Table 5 SDF Cointegration Test Statistics (k > 2) 

K N = 5 N = 20 

3 -1.70 -1.61 

4 -1.93 -1.77 

p = 0.05 

 

 

 

6. Conclusions 

We report for the first time critical values for spatial unit root and spatial 

cointegration test statistics in spatial cross-section data. For example, if there are 100 

spatial units the critical value of the normalized SAR coefficient is 0.9 for a spatial 

unit root. Our impression is that estimated SAR coefficients are typically smaller than 

these critical values in which case spatial cross-section data are typically stationary. 

If, however, spatial data happen to be nonstationary and they are regressed upon each 

other the critical value for the normalized SAC coefficient of the residuals is 0.87. If 

the estimated SAC coefficient is less than 0.87 the variables are spatially cointegrated 

and the estimated relationship between the variables is genuine. If, however, the 



 18

estimated SAC coefficient exceeds 0.87, the estimated relationship is nonsense or 

spurious.  

The concept of cointegration used here follows the residual-based tests of 

Engle and Granger (1987). A number of alternative cointegration tests have been 

developed for time series data, including Johansen’s vector error correction 

methodology (VECM). This kind of test framework is particularly suitable for 

situations in which the observation period is insufficiently long so that the long-run 

relationship in the data, if it exists, is harder to detect. It is difficult to find a parallel in 

spatial cross-section data to VECM. Whereas time series are always partially 

observed because historic data are typically lacking and the future is not observable, 

spatial cross section data are usually completely observed. Spatial samples such as 

NUTS 2 are well defined. Therefore, the problem of unrepresentative observation 

periods in time series data does not have a parallel in spatial cross section data. This 

makes residual-based cointegration tests more appropriate to spatial cross sections 

than to time series data.       

Matters would be different in spatial panel data because the observation period 

in such data may be too short to detect the long-run hypotheses that are to be tested. 

We leave the issue of spatial and temporal cointegration in spatial panel data to 

another occasion.
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