The Revival of Urban Modeling

Itzhak Benenson

Dept of Geography and Human Environment Tel Aviv University

bennya@post.tau.ac.il http://www.tau.ac.il/~bennya

The Golden Age

1960s-1970s

Ira Lowry, 1964 - Pittsburg, gravitation model

$$T_{ij} \sim 1/(a+bd+cd^2)$$

- $\boldsymbol{\cdot}$ a basic sector, including industrial, business, and administrative activities, whose clients are mostly non-local;
- · a retail sector, dealing with the local population;
- · a householder sector.

F. Chapin, Weiss, Donnelly, 1962 - 1968, Greensboro, 300x300 m units, probabilistic model, based of *potential* for development as a linear function of few easily estimated variables, initial conditions - 1948, median run is compared to 1960.

EXPECTED RESIDENTIAL LAND USE, GREENSBORD, NORTH CAROLINA, 1960 BASED ON USE OF PROBABILISTIC MODEL - MEDIAN OUTCOME OF 50 RUNS

Urban models of 1960s

- •Focus on the allocation of externally defined development quote.
- Separation between cells' potential and locations where change does occur.
- · Two-level hierarchy of urban space.
- Separation of the factors of land-use change into endogenous, determined by land unit properties and location, and exogenous, controlled by public authorities.
- Investigation of the variance of model results.
- Comparison of the actual pattern with a median, and not the best fit, outcome.

Dark Age 1970s - 1980s

Lee, 1973, Requiem for Large-Scale Models Seven Sins of Large-Scale Models:

- Hypercomprehensiveness (attempt to explain too much with too many constraints and relationships)
- Grossness (reliance on aggregate input)
- Mechanicalness (narrow language of computation)
- Expensiveness (high price of data and parameter estimates)
- Hungriness (tremendous data requirements)
- Tuningness (tautological tuning the model until outputs conform to 'reasonable' expectations)
- Complicatedness (inability of the modelers to adequately understand their own creatures)

Are urban systems just the same as chemical ones?

The general agreement is that the answer is NO

- Distant action and immediate spread of the disturbance
- Fast components (humans) can influence slow ones (infrastructure)
- \cdot Laws of unit's changes and interactions are approximations of empirical data, not the laws of nature

Renaissance

1990s - 2000s

Cellular Automata

White & Engelen, 1997, Constrained Cellular Automata - Allocation of development quote again! Cincinnati, forecast of 1966 on the base of **1840**

Stage 1: The potentials $p_{c,i}$ of transition from the current state into S_i , i = 1; . . . ; N, are estimated for each cell.

Stage 2: For each cell, obtained potentials are sorted in decreasing order.

Stage 3: An externally defined amount ni of land that must be in Si use is distributed over the cells c, for which the potential $p_{\rm ci}$ is the highest.

Cincinnati, 1966,

Model 1966

Model 1996, networks

Multi-Agent Systems

Simulation outcome

Actual trace in Tate

Comprehensive modeling White, Engelen and RIKS, 1998+, Landis, Zhang, 1998+ (California), Wadell, 2000+

Struggle with Hungriness, Tuningness, Complicatedness

The latest trend in land-use modeling for planning:

Make the rules as simple as possible, and investigate *robustness* of the model outcomes to varying planning policies.

If the model is not robust, then, most probably, you do not understand the system....

Discrete, reflecting planning constraints, rules of land-use changes If ($LU_t = 11$ or $LU_t = 4$ or $LU_t = 5$) Then ($LU_{t+1} = 10$ or $LU_{t+1} = 5$);

- G1: What happens when the *process of application of rules* does not follow the "average" practice?
- G2: Reveal planning constraints that cause negative consequences!

Struggle with Hungriness, Tuningness, Complicatedness

Claim of a day: Model must be robust!

How to achieve that?

1. Bidding or ordering opportunities according to their utilities **before** making choice - White and Engelen, Turner, Landis and Zhang, many others (but not "discrete choice" models)

		A (0.9)	B (0.8)	None
Unconditional probability to choose each one of options	Proportion al choice	$\alpha(1 - \beta/2)$ [0.54]	$\beta(1-\alpha/2)$ [0.44]	$(1-\alpha)(1-\beta)$ [0.02]
	Try the better	α [0.9]	β(1 – α) [0.08]	$(1-\alpha)(1-\beta)$ [0.02]

Probabilities of choice according to "bidding" heuristic

Opportunity	Utility at t1	Utility at t2	Utility at t3
Α	0.8	0.8	0.8
В	0.4	0.7	0.85
Α	0.8	0.8	0.12
В	0.08	0.14	0.85

My conclusion: models work well when

- · Deal with physically existing objects OK
- Data on objects' states are available OK

OR

We are able to investigate the model dynamics
 ⇒ Robust complex systems

16