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W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: 

EVIDENCE FROM MONTE CARLO SIMULATIONS 

 

 

1. Introduction 

When it comes to applying econometric models to analyze georeferenced data, researchers 

are well aware that ignoring spatial dependencies would lead to inefficient and biased 

estimates. A lot of theoretical and simulation studies have been undertaken seeking efficient 

and consistent estimators for spatial data analysis and one major issue concerns the kind of 

decisions to make regarding the specification of the structure of spatial dependence 

including the type of spatial weights to be incorporated into the model. Therefore, our study 

focuses on the evaluation of two approaches that explicitly model spatial autocorrelation: 

classical W-based regression and the recently proposed latent variables spatial 

autoregressive model. 1 

In the spatial econometrics literature the W-based spatial regressions have been 

predominant and most commonly used.  The approach is based on one or more spatial 

structural matrices, usually denoted W, that accounts for spatial dependence and spill-over 

effects. The selection of spatial weight matrices is a crucial feature of spatial models because 

they impose a priori a structure of spatial dependence on the models and affect estimates 

(Bhattacharjee and Jensen-Butler, 2006; Anselin, 2002 and Fingleton, 2003) and substantive 

interpretation of the research findings (Hepple, 1995).  

Autoregressive models can include several types of spatial weight matrices. Most 

common are the contiguity-based matrices. Two regions are said to be first-order contiguous 

if they share a common border. Higher-order contiguity is defined in a similar way. The 

contiguity matrix is based on different forms (whether the units of observation share 

common boundaries or vertices) or orders of contiguity. The other type of weight matrix is 
                                                        
1 Another approach to dealing with spatial autocorrelation is spatial filtering. It comes down to the 
removal of spatial dependence in a spatially autocorrelated variable by partioning it into a filtered 
nonspatial variable and a residual spatial variable such that conventional regression techniques can be 
applied to the filtered data (see amongst others Getis and Griffith (2002) and Tiefelsdorf and Griffith 
(2007). Spatial filtering is not considered in this paper  
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distance based and calculated using either an algorithm with distance, such as inverse 

distance or inverse distance squared, or a fixed distance band. Much progress has been made 

with respect to the comparison of spatial weights matrices (Hepple, 1995), the construction 

of spatial weights matrices (Getis and Aldstadt, 2003; Aldstadt and Getis  (2006) and 

estimating spatial weights matrices that are consistent with an observed pattern of spatial 

dependence rather than assuming a priori the nature of spatial interaction. In spite of all 

these developments the most common procedure is still to assume a priori first order 

contiguity, as expressed by a matrix W with diagonal elements equal to zero and 

off-diagonal elements equal to one if two regions are first-order contiguous and zero 

elsewhere. 

The alternative, a latent variables based approach was introduced by Folmer and 

Oud (2008). It proceeds on the basis of a structural equation model (SEM). SEM allows 

simultaneous handling of observed and latent variables within one model framework. Latent 

variables refer to those phenomena that are supposed to exist but cannot be observed directly. 

One example is socio-economic status. It carries the concept of an individual’s standing in 

the society which cannot be observed or measured directly. However, it can be measured via 

observable indicators like educational attainment, income, occupational status, etc. The 

structure of a SEM includes two parts: (i) the structural model presenting the causal 

relationships between latent variables and (ii) the measurement model showing the 

relationships between the latent variables and their observable indicators (Oud and Folmer, 

2008). 

The latent variables approach replaces the spatially lagged variables in the structural 

model (which is the analogue of the spatial dependence model in the W-based approach) by 

latent variables and models the relationship between latent spatially lagged variables and its 

observed indicators in the measurement model. Since one latent variable can be measured by 

several indicators, this approach allows for the straightforward inclusion of spatial 

dependence in the model. It is also capable of testing distance decay in a straightforward 

fashion so as to identify the spatial units that evoke a distance effect and those that do not. 

Moreover, it is possible to include various different types of contiguity as it allows 

measurement of spatial dependence by several sets of indicators. In that case more than one 
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latent spatial dependence variable enters the structural model with corresponding indicators 

in the measurement model. 

Folmer and Oud (2008) shows that the latent variables approach can produce the 

same estimates as obtained by the W-based approach but also that it is more general than the 

W-based approach. However, further comparison is needed to draw up the pros and cons of 

each approach. To gain more insight into the quality of the estimators of the regression 

coefficients including the spatial autocorrelation coefficient in both approaches, we carry out 

a number of Monte Carlo simulations. The comparison of the two approaches is done by 

considering Anselin’s (1988) Columbus, Ohio, crime dataset. The performance of the 

approaches will be analyzed in terms of bias and mean squared error for various values of 

spatial autocorrelation. 

   The rest of the paper is organized as follows: Section 2 explains the W-based spatial 

regression approach and the latent variables approach and specifies their model structures. A 

detailed description of the experimental design is given in section 3. In section 4 we report 

the simulation results and section 5 concludes the paper. 

 

 

 

2. Model Specifications 

2.1 The W-based Autoregressive Model  

We only consider the spatial lag model which assumes that the dependent variable is a 

function of exogenous variables and the dependent variable at other locations. We just refer 

to this model as the ‘W-based spatial autoregressive model’. The specification for the model 

reads: 

εβρ ++= XWyy                      (1)                 

ε ~ ),0( 2
nIN σ                 (2)                  

where y  is an 1×n  vector of observations on the dependent variable, X is an kn×  

data matrix of explanatory variables with the associated coefficient vector β , ε  is an 
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1×n  vector of error terms. W is the row-standardized nn×  spatial weight (contiguity) 

matrix, ρ is the spatial lag parameter. 

Anselin (1988) presents a maximum likelihood method for estimating the 

parameters of this model that he labels a ‘mixed regressive spatial autoregressive model’ as 

it combines the standard regression model with a spatially lagged dependent variable 

(analogue to the lagged dependent variable model in time-series analysis). Maximum 

likelihood estimation of this model is based on a concentrated likelihood function in the 

sense that the maximization can be reduced to an expression in one parameter, conditional 

upon the values of the other parameters. The corresponding log-likelihood fuction is of the 

form:  

)()(
2

1lnln
2
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2 2

2 ββ
σ

σπ XAyXAyANNL −′−−+−−=              (3) 

with WIA ρ−= .                               (4)                  

A few regressions are carried out along with a univariate parameter optimization of the 

simplified likelihood function over values of the autoregressive parameter ρ . The steps are 

described in Anselin (1988): 

1. Perform OLS of X on y : OOXy εβ +=  

2. Perform OLS of X  on Wy : LLXWy εβ +=  

3. Compute residuals: OO Xye β̂−= , LL XWye β̂−=  

4. Given Oe  and Le , find ρ  that maximizes the concentrated likelihood 

function: 

( ) ( ) WIeeee
N

NCL LOLOC ρρρ −+



 −′−−= ln1ln

2
, which is a result of the 

substitution of estimated β  and 2σ  into the log-likelihood, with C as the constant 

5. Given ρ̂ that maximizes CL , compute:  

LO βρββ ˆˆˆ −=  , ( ) ( )LOLO eeee
N

ρρσ −′−=
1ˆ 2 . 



 5

The likelihood function discussed above contains a Jacobian term Aln . Since the 

matrix A  is of dimension equal to the number of observations, its presence in the function 

to be optimized makes the numerical analysis considerably complex. The determinant and 

its derivative need to be evaluated at each iteration for a new value of the spatial 

parameter ρ . Ord (1977) has derived a simplification of determinants such as A  in terms 

of its eigenvalues, more specifically: 

)1ln()1(lnln iiii wwWI ρρρ −Σ=−Π=−            (5)                 

where the iw  are the eigenvalues of W . 

 

2.2 The Latent Variables Autoregressive Model 

A SEM in general form consists of three basic equations: 

     εη +Λ= yy   with ( ) εε Θ=cov ,             (6) 

     δξ +Λ= xx   with ( ) δδ Θ=cov ,                (7) 

   ζξηη +Γ+= B  with ( ) Φ=ξcov , ( ) Ψ=ζcov .                  (8) 

In the measurement models (1) and (2), the vectors y and x are observed endogenous and 

exogenous variables; the vectors η  and ξ  contain latent endogenous and exogenous 

variables; the matrices yΛ  and xΛ  specify the loadings of the observed variables 

(indicators) on the vectors of latent variables y and x, and εΘ  and δΘ  are the 

measurement error covariance matrices. Directly observed variables can be conveniently 

handled in the structural model by specifying an identity relationship between a given 

observed variable and the corresponding latent variable in the measurement model. 

 In the structural model (3) B specifies the structural relationships among the latent 

endogenous variables mutually and Γ  contains the impacts of the exogenous latent 

variables on the endogenous. Φ  is the covariance matrix of latent exogenous variables  

and Ψ  the covariance matrices of the errors in the structural model. The measurement 
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errors in ε  and δ are assumed to be uncorrelated with the latent variables in η  and ξ  

as well as with the structural errors inζ . 

     In a SEM modelling framework parameter estimation is done by minimizing the 

distance between the theoretical covariance matrix (based on hypotheses relating to the 

model structure as specified in the parameter matrices    ,   B,, , , , yx ΦΓΘΘΛΛ δε andΨ ) 

and the observed covariance matrix. Several estimators for SEM have been developed 

including instrumental variables (IV), two-stage least squares (TSLS), unweighted least 

squares (ULS), generalized least squares (GLS), fully weighted (WLS) and diagonally 

weighted least squares (DWLS), and maximum likelihood (ML). ML method is the most 

commonly used method in estimating SEM models and the default in the statistical packages 

Mx and LISREL. Below we apply the ML estimation. It maximizes the log-likelihood 

function: 

            ( ) ( ) πθ 2ln
22

ln
2

| 1 pNStrNNYl −Σ−Σ−= −         (9) 

where Σ  is the theoretical variance covariance matrix in terms of the free and constrained 

elements in the 8 parameter matrices: 

            







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  (10) 

S is the observed variance covariance matrix for given data Y.  

The ML-estimator ( )Yl |maxargˆ θθ =  chooses that value of θ  which 

maximizes ( )Yl |θ . Minimizing the fit function: 

            ( ) pSStrFML −−Σ+Σ= − lnln 1               (11) 

gives the same results as maximizing the above likelihood function (Oud and Folmer, 2008). 

The LISREL software package also contains a variety of test and model evaluation statistics 

and gives hints about identification problems (see Joreskog and Sorbom, 1996 for details).  

On the basis of SEM, we propose a model structure to represent the spatial lag 

model. We specify the lag model as a SEM and estimate it using the software package Mx. 



 7

The model is referred to as ‘latent variables spatial autoregressive model’ in this paper. We 

apply the concept of a latent variable to the spatially lagged dependent variable such that in 

the structural model Wy  is replaced by a latent variable while in the measurement model 

the latent spatially lagged dependent variable is related to its indicators. It replaces the 

spatially lagged variable Wy  in the W-based spatial autoregressive model by a latent 

variableη : 

ζγρη ++= xy '                                                 (12) 

and is completed by a measurement equation: 

εη +Λ=y                                         (13) 

with 
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 (Observe that without an appropriate constraint, the loadings iλ will not be identified. For 

that reason, one often chooses 1λ  = 1.) 

We assume that the spatially lagged observed variables are chosen on the basis of 

theoretical or ad hoc considerations. Moreover, as pointed out in the introduction more than 

one spatial feature can be taken into account. For instance, both the relationships to 

neighbouring regions as relationships to the core regions could be included in the case of the 

crime model. 

We first turn to the measurement model. This model is constructed by means of 

selection functions or selection matrices iS which select relevant observations from the 

vector of observations as follows. In order to distinguish between the standard definition of a 

SEM in terms of variables and a SEM defined in units of observations, as in standard spatial 

econometrics, we denote the latter by tilde (~). 
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That is, 1S  selects the values for the first indicator 1
~y , 2S  for the second indicator 2

~y , 

etc. For example, 1S  may be defined as the selector of the observations on, say crime, in 

the nearest contiguous neighbour, 2S  as the selector of the observations on crime in the 

next nearest contiguous neighbour, 3S  as the spillover of crime from the core, measured, 

for example, as crime in the core divided by a region’s distance from the core, etc. Thus, for 

the measurement model we obtain: 

.~~~~

,~~~~
,~~~~

2222

1111

mmmm ySy

ySy
ySy

εηλ
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εηλ

+==

+==
+==

M
                                            (16)                  

From the above one observes that spatial dependence is captured by two kinds of parameters, 

ρ and iλ , whereas in the standard lag model only the “average” effect wyρ shows up. This 

means that a much richer representation and testing of the spatial structure can be obtained 

than by way of standard spatial econometric approaches. For instance, it allows for 

determining those units that evoke a distance effect and those that do not, as suggested by 

Getis and Aldstadt (2004) by testing the significance of the iλ  coefficients. 

The standard SEM log-likelihood function needs correction so as to account for the 

presence of the spatially lagged dependent variable among the explanatory variables. From 

Folmer and Oud (2008), for 

m
m
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                             (17) 

we need to add Aln  to the log-likelihood function.  
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3. Experimental Design 

To investigate the performances of the two modelling approaches specified in section 2, we 

conduct a number of Monte Carlo simulations. Both approaches are applied to Anselin’s 

(1988) Columbus, Ohio, crime dataset. The first step is the design of a data-generating 

procedure. 

We first explain the data generating procedure for the W-based spatial lag model. 

For this purpose we rewrite equation (1) according to the number of variables and 

observations involved in Anselin’s crime model: 

εβββρ ++++= 22110 xxWyy                             (18) 

Thus the expression of y is: 

)()( 22110
1 εβββρ +++−= − xxWIy                   (19) 

The steps for generating samples are: 

1. Fix values for the vector ),,( 210 ββββ as: 3.0,0.1,45 210 −=−== βββ , 

and vary ρ over the interval [0, 1). 

2. Generate samples of error term ε  by randomly drawing from a uniform (0, 10) 

distribution. 

3. Compute y according to (19). 

Next the spatial lag model is estimated for each sample which gives: ρ , 210 ,, βββ  and 

2σ , on the basis of which we compute bias and mean squared error (MSE). The procedure 

is similar for the latent variables approach. Specifically, the Wy  in standard spatial lag 

model is replaced by a latent variable while in the measurement model the latent spatially 

lagged dependent variable is related to its indicators. Here we take the observables for the 

three contiguous nearest neighbouring regions. Next we estimate the latent spatial lag model 

for each of the same samples generated from steps 1~3 in the simulation procedure of the 

standard spatial lag model, which gives ρ (amongst others), 210 ,, βββ  and 2σ .  Then 

the bias and MSE of the estimators are calculated. 

The number of replications is set to 1000 and the main dimensions over which the 
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variation in power of the approaches and the distribution of the pre-test estimators are 

investigated are the changing values of the spatial lag parameter ρ . We examine the 

parameter space from [0.0, 0.9] using increments of 0.1. The experiment consists of 

comparisons in terms of model estimators and their bias and MSE of the two approaches. 

The results are displayed in tables and graphs in the next section. 

 

 

 

4. Simulation Results
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Table 1. Mean of estimation results on the Columbus, Ohio, crime dataset by W-based and latent variables spatial autoregressive models  

 

 ρ  
1β  2β  0β  2σ  

Parameter ρ   W-based    Latent  W-based    Latent  W-based    Latent  W-based    Latent  W-based    Latent 

0.00   -0.044     -0.009 
  (0.169)      (0.243) 

  -1.018     -0.964  
  (0.305)      (0.424) 

  -0.297     -0.290 
  (0.093)      (0.131) 

  45.907     47.538 
  (6.082)      (88.589) 

  91.846    88.168 
  (19.345)    (18.718) 

0.10   0.055      0.057 
  (0.163)      (0.245) 

-1.021     -1.011 
  (0.308)      (0.382) 

  -0.298     -0.295 
  (0.093)      (0.110) 

  46.087     45.492 
  (6.334)      (37.136) 

  92.013    89.082 
  (19.376)    (22.816) 

0.20   0.154      0.138  
  (0.155)      (0.230)   

  -1.024     -1.024  
  (0.310)      (0.381) 

  -0.298     -0.292   
  (0.094)      (0.116) 

  46.288     44.078 
  (6.607)      (11.581) 

  92.208    90.208    
  (19.431)    (19.228)  

0.30   0.254      0.245 
  (0.146)      (0.254)  

  -1.028     -1.051 
  (0.313)      (0.394) 

  -0.298     -0.293 
  (0.094)      (0.103) 

  46.516     43.343 
  (6.908)      (12.441) 

  92.431    93.163 
  (19.510)    (20.453) 

0.40   0.354      0.372 
  (0.135)      (0.204) 

  -1.032     -1.042  
  (0.316)      (0.345) 

  -0.299     -0.286 
  (0.094)      (0.100) 

  46.782     41.512 
  (7.244)      (10.259) 

  92.681    95.079 
  (19.612)    (21.635) 

0.50   0.455      0.495 
  (0.122)      (0.160) 

  -1.037     -1.047  
  (0.319)      (0.324) 

  -0.299     -0.284 
  (0.094)      (0.094) 

  47.105     39.595 
  (7.633)      (10.002) 

  92.964    96.026 
  (19.737)    (22.895) 

0.60   0.558      0.599 
  (0.108)      (0.124) 

  -1.043     -1.035 
  (0.322)      (0.322) 

  -0.299     -0.277 
  (0.094)      (0.094) 

  47.520     41.595 
  (8.106)       (9.065) 

  93.284    96.168 
  (19.886)    (25.045) 

0.70   0.662      0.692 
  (0.093)      (0.103) 

  -1.049     -1.023  
  (0.326)      (0.323) 

  -0.300     -0.270 
  (0.094)      (0.094) 

  48.044     41.760 
  (8.874)       (9.501) 

  93.678    94.983 
  (20.043)    (26.803) 

0.80   0.768      0.793 
  (0.078)      (0.116) 

  -1.055     -0.969  
  (0.334)      (0.369) 

  -0.299     -0.258 
  (0.094)      (0.093) 

  48.778     40.759 
  (10.390)     (14.363) 

  94.258    90.138 
  (20.340)    (31.348) 

0.90   0.876      1.140 
  (0.061)      (0.269) 

  -1.064      0.110  
  (0.353)      (1.433) 

  -0.298     -0.210 
  (0.094)      (0.201) 

  50.387    -12.582 
  (14.803)     (58.167) 

  95.053     2.491 
  (20.605)   (203.505) 
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Table2. Bias of the estimators for ρ , 1β  and 2β , with 10 different values for the spatial lag parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ρ  
1β  2β  

Parameter ρ    W-based    Latent   W-based    Latent   W-based    Latent 

0.00    0.138      0.140    0.244      0.311    0.074      0.096 

0.10    0.133      0.159    0.246      0.285      0.074      0.084   

0.20    0.127      0.180    0.248      0.286    0.074      0.085 

0.30    0.120      0.178    0.250      0.278    0.075      0.079 

0.40    0.111      0.151    0.253      0.266    0.075      0.078 

0.50    0.101      0.120    0.255      0.259    0.075      0.076 

0.60    0.089      0.094    0.258      0.257    0.075      0.077 

0.70    0.076      0.076    0.262      0.257    0.075      0.079 

0.80    0.062      0.077    0.269      0.290    0.075      0.082 

0.90    0.047      0.251    0.283      1.147    0.075      0.115 
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Table 3. Mean squared error )100(×  of the estimators for ρ , 1β  and 2β , with 10 different values for the spatial lag parameter 

 
 ρ  

1β  2β  

Parameter ρ    W-based    Latent   W-based    Latent   W-based    Latent 

0.00    3.032      5.913    9.342     18.047    0.868      1.714 

0.10    2.847      6.160    9.499     14.613      0.871      1.215   

0.20    2.615      5.682    9.671     14.555    0.874      1.362   

0.30    2.341      6.727    9.860     15.743    0.877      1.064 

0.40    2.032      4.218   10.067     12.040    0.880      1.019 

0.50    1.696      2.562   10.294     10.696    0.883      0.916 

0.60    1.344      1.545   10.544     10.468    0.886      0.928 

0.70    1.013      1.062   10.865     10.503    0.887      0.973 

0.80    0.711      1.349   11.418     13.663    0.892      1.042 

0.90    0.427     12.988   12.830    328.359    0.889      4.867 
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5. Conclusions 

 



 15

Reference 
Aldstadt, J. and Getis, A. (2006). Using AMOEBA to create a spatial weights matrix and 
identify spatial clusters. Geographical Analysis, 38, 327-343. 
 
Aldstadt, J. and Getis, A. (2004). Constructing the spatial weights matrix using a local statistic. 
Geographical Analysis, 36, 2, 90-104. 
 
Anselin, L. (2002). Under the hood: Issues in the specification and interpretation of spatial 
regression models. Agricultural Economics 27, 3, 247-267. 
 
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic 
Publishers. 
 
Bhattacharjee, A. and Jensen-Butler, C. (2006). Estimation of the spatial weights matrix in the 
spatial error model, with an application to diffusion in housing demand. Available: 
http://www.econ.cam.ac.uk/panel2006/papers/Bhattacharjeepaper23.pdf. 
 
Fingleton, B. (2003). Externalities, economic geography and spatial econometrics: conceptual 
and modeling developments, International Regional Science Review, 26, 2, 197-207. 
 
Folmer, H. and  Oud, J. (2008). How to get rid of W? A latent variables approach to 
modeling spatially lagged variables. Environment and Planning A, 40, 2526-2538. 
 
Hepple, L.W. (1995). Bayesian techniques in spatial and network econometrics: 
1. Model comparison and posterior odds. Environment and Planning A, 27, 447-469. 
 
Hepple, L.W. (1995). Bayesian techniques in spatial and network econometrics: 
2. Computational methods and algorithms. Environment and planning A, 27, 615-644. 
 

LeSage, J.P. (1999). The Theory and Practice of Spatial Econometrics, 1999. Available: 
http://www.spatial-econometrics.com/html/sbook.pdf. 
 
Neale M.C., Boker S.M., Xie G., Maes H.H. (2003). Mx: Statistical Modeling. VCU Box 
900126, Richmond, VA 23298: Department of Psychiatry. 6th Edition. 
 
 


