
 1

Not to be quoted without permission of the authors. 

 
 
 

On the optimal spatial structure of property tax1 
 

Alex Anas2 and David Pines3 
 

October 30, 2008 
 
 
 

Abstract 
The property tax on residential properties in an urban setting is distortive in two 
distinct dimensions. The first, inherent in commodity taxation, is the divergence of 
MRS from MRT; the second, which is relevant to spatial setting, is the uniform 
application of the tax over space, given the above divergence. The prevailing 
literature on property tax is almost entirely concerned with the first dimension. 
The study reported here endeavors to fill this gap. First, we define the issue in a 
setup of a closed urban system, consisting of open monocentric cities; second, 
we characterize the determinants of the (second-best) optimal spatial tax 
structure; and third, we explore its relationship to the controversial reform 
designed to increase the tax rate falling on land above the tax rate falling on the 
improvement (split-rate tax structure). We show that if, initially, the same tax rate 
that applies equally to land and improvement varies optimally across locations, 
introducing a split-rate structure is always welfare improving. We can not show, 
however, that, this is also true if initially the common tax rate does not vary 
optimally across locations. The reason is that if one requirement for efficiency is 
violated, then pursuing the satisfaction of any of the other requirements need not 
be welfare increasing.  
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1. Introduction 
 

This article is concerned with the (second-best) optimal spatial structure of 

the tax on residential real property value in a closed urban system composed of 

open monocentric cities. We consider this issue important in itself and in its 

implications on the disputed tax reform occupying the recent literature on 

property tax. The present paper characterizes the spatial (second best) efficient 

tax rate distribution and discusses the implication of overlooking this aspect of 

the tax in evaluating the merit of the reform discussed in the literature. 

Property tax on real residential property itself is a generic term of a host of 

tax systems differing from each other by the specific tax base or bases, their 

assessment in theory and practice, the level of government that determines rules 

for the above characteristics, the level of governments that collect and use the 

revenue of these taxes, etc. (see Youngman and Malme (1994)). Here we 

suggest a prototype, often used in the literature, to portray a simplified version of 

the prevailing property tax systems. According to this prototype, a fixed ad-

valorem tax is levied on the value of each residential property consisting of a land 

parcel occupied by residential structure. Such a tax is equivalent to another ad-

valorem tax system imposed separately, but at the same rate, on the land parcel 

and the structure (improvement) of the property (e.g., see Brueckner and Kim 

(2003)).4  

Most of the recent studies on property tax are concerned with a reform 

designed to replace the existing uniform rate with a split-rate (or graded) property 

tax such that the rate on land exceeds the rate on the improvement.5 This reform 

is motivated by the prevailing view that taxing land that is immobile is not 

distortive whereas the tax falling on the improvement is distortive for two 

reasons. First, the portion of the tax falling on the improvement is a commodity 

                                                 
4 An important simplification inherent in their formulation that we follow is the abstraction from the multi 
period dimension inherent in the concept of value. We follow them in using a single period horizon model. 
5 Such a split-rate system prevails in 18 cities in Pennsylvania, including Pittsburgh., as well as other local 
governments and municipalities elsewhere (e.g., South Korea and Australia - see Youngman and Malme 
(1994)).  
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tax that creates a distortive gap between MRS and MRT. Second, in a spatial 

context, it is often alleged that, by reducing the structural density, the property tax 

falling on the improvement tends to induce sprawl which is often considered to be 

harmful. 

The specific controversial issues regarding the merits of this reform are 

whether, indeed, land tax in practice is not distortive and whether the tax on the 

improvement that is inherent in the property tax really induces sprawl (a concept 

which is not always well defined). The first issue has originally been raised 

independently of the property tax reform’s controversy (e.g., see Bentick (1979), 

D. E. Mills (1981), Wildasin (1982), and Tideman (1982)) but it is directly relevant 

to the potential merit of the reform. It turns out that the non-neutrality of land 

taxation finding is based on an assumed assessment practice where the site 

valuation depends on the value of the existing improvement instead of the value 

of raw land which reflects the best use of the site (see Wildasin (1982), Tideman 

(1982), and Arnott and Petrova (2002)). This solution to the conceptual debate, 

however, is extremely difficult to implement. Arnott and Petrova (2002) describe 

the issue as a dilemma between “greater efficiency of the raw site value tax and 

the lower administrative costs (broadly speaking) of the residual tax”. E. S. Mills 

(1998) is more skeptical regarding the reform when he argues that even residual 

assessment (e.g., assessment based on the property value minus the cost of the 

improvement) is vulnerable to substantial mistakes, especially when it applies to 

old buildings that constitute a considerable fraction of the city cores’ residential 

properties. E. S. Mills (1998) suspects that due to these practical difficulties, the 

reform may generate more distortion than generated by the existing property tax 

and concludes that “...a land tax, substantially substituted for the existing 

property tax, is theoretically attractive but practically almost worthless.”  

The second issue (the effect of property tax on sprawl) was investigated 

on both theoretical and empirical levels. On the first level, Brueckner and Kim 

(2003) showed that the property tax has two opposing effects on urban sprawl 

(when we define it as the average urban population density). On the one hand, 

the tax on the improvement tends to reduce structural density whereas, on the 
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other hand, the substitution and welfare effects reduce the housing consumption. 

Therefore, the combined effect on population density and sprawl is ambiguous, 

depending on the relevant functions and their parameters.6  

On the empirical level, the issue of the effect of property tax on sprawl was 

studied either indirectly, through the effect of applying the split-rate reform (e.g., 

see Oates and Schwab (1997)), or directly by correlating city area size to the 

effective tax rate (e.g., see Song and Zenou (2006)). Oates and Schwab (1997) 

studied the implications of the property tax reform carried out in Pittsburgh in 

1979-80 (under this reform, the tax rate on land was raised to more than five 

times the tax rate on structures). They concluded that this reform played an 

important  supporting role in “…the dramatic increase in the building activities, far 

in excess of the other cities in the region”. Their result refers mainly to structural 

density of office buildings and can hardly support the presumption that the reform 

can restrain sprawl. A recent study by Banzhaf and Lavery (2007), however, 

provides more relevant evidence that the combined effects of the split-rate tax 

scheme on population density is positive. On the one hand, they show that the 

split-rate tax scheme increased the capital/land ratio substantially; on the other 

hand, not ignoring the opposing effect of the property tax emphasized by 

Brueckner and Kim (2003), they found that its effect on the per-capita housing 

demand was insignificant. They conclude, therefore, that “…the split-rate tax is 

potentially a powerful anti-sprawl tool.”  

The reported empirical finding, however, is not conclusive. Song and 

Zenou (2006) find a negative correlation between the census urbanized areas, 

on the one hand, and the average property tax, on the other, thus suggesting that 

the dwelling size effect of Brueckner (2003) dominates the structural density 

effect. 

Although the prevailing property tax rate is not always uniform across 

space (see Youngman and Malme (1994)), this is not reflected in the theoretical 

literature that we are aware of; rather, the property tax is portrayed as an ad-

                                                 
6 Earlier studies either were not aware of these two opposing effects (e.g., see Nechyba (1998)) or were 
aware of both but were not concerned with the effect of the property tax on sprawl in terms of urban area 
expansion (e.g., see Leroy (1976)). 
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valorem tax applied uniformly over space inside the local jurisdictions that 

employ the tax. Such uniformity violates the (second-best) efficiency of  

commodity taxation and is an additional source of distortion in property tax 

systems. This gap in the existing theoretical analysis of the distortion generated 

by the property taxation motivates the present study. 

In order to explore this issue, we construct a simple general equilibrium 

model of a closed urban economy with a fixed population and a system of open 

cities (that is, with costless migration between cities), as in Anas and Pines 

(2008). Constructing such a model requires, of course, definitions of the 

centrifugal and centripetal forces that allow the endogenous formation of cities 

with some finite population mass. These two forces have received in the 

literature diverse and sometimes even conflicting explanations in the relevant 

literature (see Abdel-Rahman and Anas (2004) for a survey). For example, the 

centripetal force in Stiglitz’ (1977)7 LPG model is the advantage of a large city 

size in reducing the per-capita burden of LPG provision while the centrifugal 

force is production that exhibits scale diseconomies due to a fixed supply of land. 

In a typical urban model, the centripetal force is rather associated with production 

that exhibits scale economies, such as those arising from information exchange 

among producers in the same city or those arising from the taste for a variety of 

products to consume, or a technological bias for a variety of inputs in production. 

The centrifugal force is often depicted as per-capita commuting cost required to 

accommodate the urban population and which increases with population, given 

the level of utility (see Fujita (1988)8). In order to simplify the analysis in our city 

system model, we borrow the centripetal force from Stiglitz (1977) and the 

centrifugal force from Fujita (1988).  

Using this urban setup, we investigate the determinants of the optimal 

(second-best) spatial tax structure and explore its relationship to the controversial 

reform of a split-rate tax scheme. Specifically, we show that, indeed, when the 

production function of housing is Cobb-Douglas and the compensated demand 

                                                 
7 See also Atkinson and Siglitz (1980). 
8 See also Fujita and Thisse (2002). 
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for housing is unitary, there is no reason to differentiate the property tax rate 

according to location. This, however, is an exceptional case. In general the 

optimal tax should vary across locations. For example, if the compensated 

demand elasticity for housing is larger than 1 whereas the elasticity of 

substitution between composite good and land in the production of housing is 

smaller than 1, then the (second-best) optimal property tax rate function is 

decreasing with distance from the city center.  

A more general conclusion is that if the tax rate is spatially (second-best) 

optimal, then a split-rate reform always increases welfare. When, however, 

initially the tax rate is spatially uniform, marginal increase in the rate falling on 

land need not be welfare improving. This can be explained by the second-best 

theory which states that if one requirement for efficiency is violated, it is not clear 

that each of the other requirements should still be satisfied. The policy implication 

is that the split-rate tax reform should be accompanied by adjusting the tax rate 

spatially. 

Section 2 introduces the setup. Section 3 discusses the first-best 

allocation and the implied Henry George rule. Section 4 discusses the second-

best property tax structure obtained by its differentiation across locations. Cases 

where the tax rate should increase, decrease, or remain constant across 

locations, are identified. Section 5 analyzes the implications of introducing the 

split-rate tax structure when its spatial structure is optimal and when it is not. 

Section 6 summarizes the results derived in the paper and specifies the need for 

further studies, including simulations to obtain a further insight on the importance 

of extending the scope of the presently conceived reform in the direction implied 

by this study. 
 

2. The setup 
We consider a closed mixed urban economy where the list of agents includes, 

farmers, urban land-trading corporations (ULTC, hereinafter), workers-residents, 

(residents, hereinafter) urban housing producers (UHP, hereinafter), and a 

planner. 
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Geography: The geography is composed of a system of m  identical continuous 

monocentric cities surrounded by agriculture production.9 The shape of each of 

the cities is portrayed by the length of the arc at distance z  from the center 

available for urban use, [ ]zφ  (e.g., when the cities are circular, [ ] 2z xφ π= ; when 

the cities are linear, [ ] constantzφ = ). The most distant location where [ ] 0zφ >  is 

defined as the city boundary,b . The relative location of the city centers is 

unidentified (the intra-city geography is specified; the inter-city is not). The urban 

population is composed of N identical workers-residents (referred to hereafter as 

“residents”) who live inm identical cities, such that each city accommodates 

/n N m= residents. The population spatial distribution in each city is portrayed by 

[ ] [ ] /n z d z dzν≡ where [ ]zν  denotes the number of residents living within a 

distance z  from the city center.  

 

Farmers: 10 The marginal land productivity in agricultural is constant r , which is 

the (perfect elastic) supply price for UHP.  

 

Urban land trading corporations: ULTC is a competitive industry where each firm 

rents land from a farmer at a cost of r  and rents it out to the highest bidder at a 

price of ( )R z  such that the gross profit per land unit at z  of a ULTC is [ ]R z r− . 

Since entry into the land trade business is costless, there is no opportunity for 

deriving profit from arbitrage at the city boundary, that is,  

 

[ ] 0.R b r− =                                                                                                      (1) 

 

 The net profits derived by all the ULTC in the city are given by 

[ ]( ) [ ]( )
0

1
b

z R z r dxφΠ = −Ω −∫ , where Ω  is the tax rate on gross profits from land 

                                                 
9 We can alternatively assume that the cities are surrounded by raw land which has no alternative use.  
10 If we adopt the alternative geographical configuration, there are no farmers (see footnote 8).   
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transactions. The net tax profits are equally distributed among the city residents 

who are the ultimate owners in equal shares of the ULTC, such that each 

resident receives m
N

π = Π . 

 

Residents: The urban residents are identical in terms of both preferences and 

initial endowments. Therefore, in equilibrium, each of the N  individuals must be 

accommodated and become a resident in some location of the urban system. 

Otherwise, an individual left outside will not be able to achieve the utility, which is 

achievable by those accommodated into the system. Competition among the 

equal individuals (who have the same income and preferences) must, therefore, 

lead to: 

 

[ ]
0

0,
b

n n z dz− =∫                                                                                              (2) 

 

and 

 

0.mn N− =                                                                                                     (3) 

 

The preferences are represented by a quasi-concave utility function 

[ ],u x h
∧

 where x is the quantity of the composite good and h  is the quantity of 

housing. Free mobility, equal income, and competition imply that the utility 

achieved by each individual in the urban system is the same, that is, 

[ ] [ ]ˆ ,u u x z h z  = .  

 

Given the consumer’s price of housing q , the compensated demand for 

the composite good of a resident living at any z  can be written as [ ],x q z u    and 
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the compensated demand for housing as [ ],h q z u   , such that the budget 

constraint of each household residing at z is: 

[ ] [ ] [ ] [ ] [ ] [ ], , , 0E q z u t z x q z u h q z u q z t z y     + ≡ + + − =      ,                           

where [ ]t z  is the commuting cost incurred by a resident living at z , [ ]' 0t z > , 

[ ]'' 0t z > . 

Each resident is endowed with one unit of a composite good and, as 

already explained, has an equal share in all the net profits of urban land 

transactions in the economy. Since, however, in equilibrium the cities are 

identical, it can also be viewed as if each individual has an equal share only in 

the profits derived by transactions in his own city of residence. Since the no labor 

income is ,π  the net income, y , is given by 1+π , thus implying 

[ ] [ ] ( ), 1 0E q z u t z π  + − + =                                                                      (4) 

 

Where 

 

[ ]( ) [ ]( )
0

1 1 0
b

z R z r dx
n

π φ− −Ω − =∫                                                                         (5) 

 

Urban housing producers (UHP): Each of the UHP uses C  units of a composite 

good and L  units of land to construct H  housing units of (e.g., defined in units of 

floor area) according to a CRS production function, ( ),F C L . Each unit of a 

composite good costs [ ]1 zα+  at z , where [ ]zα  is the ad-valorem tax rate on 

the composite good input; each land unit costs [ ] [ ]( )1R z zβ+  at z  where [ ]zβ  is 

the ad-valorem tax rate on the land input. Due to CRS, we can rewrite the 

production function in terms of density, that is, [ ]H f c=  where /  H H L= and 

/c C L= . CRS and profit maximization require that c is a function of [ ]
[ ] [ ]1

1
z
R z

z
β
α

+
+

. 
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Hence, since H depends on c , it is indirectly a function of [ ]
[ ] [ ]1

1
z
R z

z
β
α

+
+

.
 
Profit 

maximizing of the composite good/land ratio requires: 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]1

, '
1

1 ' 1L

z
q C L qH c c R z

z
F z qf zβ

α
α α

  +
= ⇒ =   

+    
+ = + .  

 Free entry into the industry eliminates profits, thus implying 

 

[ ] [ ] [ ]
[ ] [ ] [ ]( ) [ ] [ ]( )1

1 1 0
1

z
q z H z c R z z R z z

z
β

α β
α

 +
− + − + = 

+  
                                    (6) 

 

Clearing markets: There are two markets to be cleared: the composite good 

market and the housing market. Clearing the composite good market implies: 

 

[ ] [ ] [ ]( ) [ ] [ ]
[ ] [ ]

0

1
, 0

1

b z
n n z x q z u t z z c R z r dz k

z
β

φ
α

    +   − + + + + =       +     
∫ .                (7) 

 

Clearing the housing market in each location implies: 

 

[ ] [ ] [ ] [ ]
[ ] [ ], 0

1
1

n z h q z u z H
zc R z
z

φ
β
α

  
  − =        

+
+

.                                               (8) 

 

Planner: We assume that the formation of a city requires k units of the composite 

good. The benevolent urban planner chooses the financial instruments he 

controls in order to maximize the common utility of the urban population subject 

to (1) - (8) and his budget constraint  

 

[ ] [ ]( ) [ ] ( ) [ ] [ ] [ ]( )( )
0

0
b

k z R z r z c R z z R z z dzφ φ α β − Ω − + + = ∫ .                              (9) 
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Summing up, given a policy set [ ] [ ]{ },, z zβαΩ , an equilibrium consists of 

three functions [ ] [ ] [ ]{ }, ,n z q z R z  and five parameters, { }, , , ,u n m b π ) which satisfy 

(1) - (9). It is easy, to show, however, that only eight out of the above nine 

equations are independent - a reflection of the Walras Law.11 For example, (9) 

can be derived from (1), (2) and (4) - (8).12 We are then left with eight equations 

(1) - (8) to solve the three equations [ ] [ ] [ ]{ }, ,n z q z R z and the five parameters 

{ }, , , ,u n m b π . Moreover, we can simplify the solution procedure by dividing it into 

two sequential steps. In the first, we ignore (3) and use the remaining seven 

equations (1), (2), and (4) - (8) to solve the three functions [ ] [ ] [ ]{ }, ,n z q z R z  and 

the four parameters { }, , ,u n b π . Then, in the second step, we substitute the 

solution for n  obtained in the first step into (6) to solve form . This is possible 

becausem appears only in (3). 

In the sequel, we discuss three regimes. Under the first regime, which we define 

as the first best, the planner is free to use Ω  at any level he prefers. Under the 

second regime, that is formally rarely used (it is sometimes applied through 

different assessment procedures) the planner cannot use Ω  and cannot apply 

different rates to the land and the improvement but he can apply different rates 

across locations: 

 

[ ] [ ] [ ]z z zα β ψ= =                                                                               (10) 

 

and [ ]zψ  is free to vary with z  as the planner wishes.  

Under the third regime, which we define as a prototype of prevailing 

property tax schemes, the planner is more constrained. In the most common 

case, the planner is constrained by 

 

                                                 
11 Walras’ Law states that in the set of equations representing all the agents’ budget constraints and the 
market clearing conditions, one of the equations is dependent on the others.  
12 The proof is available from the authors upon request. 
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[ ] [ ]  (constant)z zα β ψ= = ,                                                                       (11) 

 

that is, the planner is constrained to use the same rates on land and the structure 

and this common rate cannot vary across locations; in the less constrained case, 

referred to as split-rate property tax, the planner is constrained by 

 

[ ] [ ](constant) (constant), z zα α β β= < =                                                          (12) 

 

that is, the constraint regarding the tax rate on land is somewhat relaxed, but still 

remains effective.  

 
3. First best 
 
 According to this regime, the planner is free to choose any set of taxes 

[ ] [ ]{ }, ,z zα βΩ  subject to the independent constraints (1), (2), (4) - (8). In fact, 

however, the problem can be simplified somewhat. First, we notice that the 

first order conditions for maximizing utility subject to (1), (2), and (4) - (8) is 

equivalent to the first-order conditions of maximizing the surplus of the city, 

that is, the left side of (7), subject to (1), (2), (4)-(6), and (8). Second, we 

observe that R b  appears only in (1) and Ω  appears only in (5). It then 

follows from the first-order conditions that their Lagrange multipliers of (1) and 

(5) vanish and, therefore, we can suppress them in the outset. We are then 

left with (2) - (4), (6), and (8) as the binding constraints for the first stage 

(recall that the determination of m  is left to the second stage). The 

corresponding Lagrange function is, therefore: 
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[ ]( ) ( )( ) ( )( )

[ ]( ) ( ) ( )( ) [ ]

0 0

0 0 0

1

1 1

b b

b b b

L n n z x t c r dx k E t dx

n z h H dx qh c R dx n n z dx

φ θ π

ρ φ λ α β ϕ

= − + + + − − + − +

 
− − − − + − + − − 

 

∫ ∫

∫ ∫ ∫
                  (13) 

where the following abbreviated notation is used: 

 

{ } [ ] [ ] [ ] [ ] [ ]{ }, , , , , , , , , , ,x h E c H x q u h q u E q u c R H c≡  

{ } [ ] [ ] [ ] [ ] [ ] [ ]{ }, , , , , ,  , , , , ,q R t q z R z t z z z zφ θ ρ λ φ θ ρ≡ . 

The first-order conditions with respect to [ ],  ,  ,  ,  ,Rq n z n π  and α  are13 

 

[ ]( ): 0,q n z x h h Hq qρ θ λ− + − − =                                                   (14) 

 

( ) ( )1 1 1: ' ' ' ' ' 1 ' 1 0
1 1 1

R c H c qH c cβ βφ ρφ λ β β
α α α

+ + − + − − + − + = + + +              (15) 

 

[ ] ( ): 0,n z x h tρ ϕ− + + − =                                                                 (16) 

 

: 1 0n ϕ− = ,                                                                              (17) 

 

.: 0
0

b
dzπ θ =∫                                                                                        (18) 

 

( ) ( ) ( )2 2 2
1 1 1 1: ' ' ' ' ' ' 0

11 1 1
c R H c R qH c R c R cβ β β βα φ ρφ λ

αα α α

 + + + + − − − + − =
 ++ + + 

      (19) 

 

Add ( )( )q qn z x qh+ to (14) and rearrange, it will become 

                                                 
13 We do not need the other first-order conditions to derive our results. 
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[ ]( ) 0,qn z h h Hqρ θ λ− + + =                                                                           (20) 

 

Multiply (15) by 
1
R
α+

, add the result to (19), and substitute into the result 

the profit maximizing condition ( )' 1 0qH α− + =  and (6) to obtain: 

 

( ) ( )( )1 1 1 0 0
1 1

Hqc Rα β λ λ λ
α α

+ + + = = ⇒ =
+ +

.                                               (21) 

 

It follows from (4), (16), and (17) that  

 

q
h
πρ − = − .                                                                                                        (22) 

 

Finally, substitute (21) and (22) into (20), divide the result by h , integrate, and 

use (18) to obtain: 

 

( ) ( )
0 0 0

0
b b b

q qh h
n z dz dz n z dz

h h
π θ π µ− + = − + =∫ ∫ ∫ .                                                    (23) 

 

We assume that h  is not infinitely inelastic and, therefore, the left side of 

(23) is positive. This implies contradiction unless π  vanishes. When π  vanishes, 

however, 1Ω = , that is, the entire aggregate differential land rent, 

[ ] [ ]( )
0

b

z R z r dxφ −∫  (ADLR, hereinafter), is used for financing the LPG. 

Furthermore, when 0π = , 1E t+ = . This implies that ADLR is not only entirely 

used to finance k , but it is the single tax, that is, the single Henry George tax for 

financing k . 

 Of course, precisely the same results, including the Henry George rule 
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can more easily be derived from the fundamentals, that is,  

minimizing [ ] [ ] [ ]( ) ( )( )
0

b

n n z x z t z c r dx kφ
 

− + + + + 
 
∫   

subject to 

[ ] [ ] [ ] [ ] 0n z h z z H zφ− = ; [ ]
0

0
b

n n z dz− =∫ ; and [ ] [ ]( ),u u x z h z− .14  

 Our Henry George result depends crucially on the assumption that cities 

are perfectly replicable. It need not be satisfied, of course, in a non-replicable 

closed city. If the closed city happens to be larger than its optimal population 

size, then, under first best, ADLR>k such that the surplus should be redistributed 

to the residents of as a poll subsidy; if the closed city happens to be smaller than 

its optimal population size ADLR<k and the deficit should be financed by a poll 

tax.  

 

4. Optimizing the property tax rate across locations 
 

In this section we assume that the planner is constrained by 0Ω =  and, in 

addition, (10) is binding. That is, the same tax rate applies to both the land and 

the improvement, or, equivalently, the tax applies to the value of the property as 

a whole. The planner can however determine the spatial distribution of the tax 

rate [ ]zψ . Being constrained by (10) the relative cost of land is given by  

R1 1
1 1

R R Rβ ψ
α ψ

+ +
= =

+ +
 and ψ  appears only (6) such that, by the first-order 

condition, its shadow price vanishes. We can, therefore, suppress it from the 

Lagrange function. The corresponding Lagrange function then reduces to: 

 

                                                 
14Observe that, in contrast to the preceding exposition, now [ ] [ ] [ ]{ }, ,x z h z c z  are 

quantities, not utility maximizing demands and profit-maximizing composite good input in housing 
production. 
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         (24) 

           

           

 

The first-order conditions are now 

 

[ ]( ): 0,q n z x h hq qρ θ− + − =                                                            (25) 

 

1: ' ' ' 0 ' ' ' 0R c H c c H c
n n
φ µ φ ρφ µ ρ− + = ⇒ − + =                                           (26) 

 

[ ] ( ): 0,n z x h tρ ϕ− + + − =                                                                (13)15 

 

: 1 0
n

n π µ ϕ−− = ,                                                                      (27) 

 

.: 0
0

b
dzπ θ µ− =∫                                                                                   (28) 

 

We will now use these conditions and the constraints to characterize how 

ψ  varies across locations.  

 
Adding 0q qx qh+ =  to (25), it can be rewritten as: 

 

[ ]( ) [ ] 1 0q q qn z x h h n z h q h
q
ρρ θ θ

 
+ + = − + = 

 
                                                      (29) 

 
Using (4), (13) and (27), we obtain: 

 

                                                 
15 We use the original number for an equation that previously appeared.  

[ ]( ) ( )( )

( )( ) ( ) [ ]( )

0

0
0 0 0

0 0 0

11 ( .

L n n z x t c r dx k

E t dx R r dx n z h H dx
n

φ

θ π µ π φ ρ φ

= − + + + −

− + − + − − − − −

∫

∫ ∫ ∫
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1
q qh qh n
ρ π π µ 
− = − − 

 
.                                                                                        (30) 

 
Substituting (30) into (29) and rearranging yields 
 

[ ] [ ] [ ]2 2 20 0q q qh h h
n z n z n z

n h h nh
ππ µ θ π π µ θ − + = − = ⇒ − = − = 

 
.                          (31) 

 
Integrating (31) and using (28) yields 
 

[ ] [ ] [ ]2 2 2
0 0 0 0

b b b b
q q qh h h

n z dz n z dz dz n z dz n
h nh n h

µπ µ π θ π
 

− = − = − 
 

∫ ∫ ∫ ∫ .                            (32) 

 
Now, since 0qh < ,  
 

[ ]

[ ]

2
0

2
0

0 1

b
q

b
q

h
n z dz

h
h

n z dz n
h

π

π

−
> > −

−

∫

∫
. 

 
Hence,  
 

0 1
n
µ

> > − .                                                                                                        (33) 

 
It then follows from (30) and (33) that  
 

1 0q
h n
π µρ  − = − + < 
 

,                                                                                       (34) 

 
that is, the market value of housing is excessive. 
 
 Using the first order condition for maximizing the structure density, that 

is, ( )' 1qH ψ− + =0, (26) can be rewritten as: 

 

( ) ( )

( )

' ' ' ' 1 1

1 1 ' ' 0.

c H c c
n q n

c c
q n

µ ρ µρ ψ ψ ψ

ρ µψ ψ

 
− + = + − + + + 

 
 

= + − + + = 
 

                                                  (35) 
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Then, substituting (30) into (35), we obtain, 
 

( )' ' 1 1 0.c c
n qh n
µ π µψ ψ  + − + + = 

 
                                                                     (36) 

 

Now, we substitute (10) into (6), differentiate the result with respect to z , use the 

maximizing profit condition with respect to c , and obtain: 

 

( ) ( ) ( ) ( )
1 0

1 1
R q R Hq q c Rc R R Hq
R q R R q R

ψ ψ ψ
ψ ψ

+
+ + + − = ⇒ = −

+ +
.                         (37) 

 

where a dot denotes a derivative with respect to ,z  that is, the distance from the 

center. Next, we differentiate (36) with respect to z  and obtain 

 

( ) ( ) ( ) ( )

1 1

1 1 1 1 1 1

qh n

R qh
qh n R n qh q

π µ ψ

π µ µ πψ ψ σ ψ η

  − +  
  

    = − − + + − − + + −    
    

                        (38) 

 

Combining (37) and (38) we get rid of R  and: 

 

B q
A q

ψ =                                                                                                           (39) 

 

where: 

" ,
'

c R
c

σ ≡  that is, the local elasticity of substituting C  for L  in housing production, 

qh q
h

η ≡ − , that is, the compensated demand elasticity for housing with respect to 

its price q , 
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( ) ( ) ( )1 1 1 1 1
1
c RA

qh n R qh n
π µ π µψ ψ σ

ψ
 +   = − + − − + + −    +    

, 

 

and 

 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 .
1
HqB

R qh n qh n
π µ π µψ ψ σ ψ η

ψ
     = − − + + − + + + −      +      

 

 

With the definitions of σ , η , A , and B , (39) can be used to characterize 

ψ . In some specific cases, we can characterize it analytically. To that end, we 

first use (33) and (36) to verify that  

 

( )1 1 0 1 1
1

1 1 0.

qh n qh n

qh n

π µ π µ ψψ ψ
ψ

π µ

   − + + > ⇒ + < <    +   

 ⇒ − + > 
 

                                  (40) 

 

It follows from (40) and 0q <  that: 

 

Proposition 1: (a) If 1η σ= = , then 0,A >  0B = , and 0ψ = . (b) If 1η >  and 
1σ < , then 0,A >  0B > , and 0ψ < . (c) If 1η < , and, 1σ = , then 0,A >  0B < , 

and 0ψ > . 
 

 Figure 1 portrays the three cases referred to in Proposition 1 and 

represents those few cases that we could characterize ψ analytically. The single 

point in the illustration that generates 0ψ =  is ( ) ( ), 1,1η σ = . Corresponding to the 

shaded area, including its boundaries 0ψ < ; corresponding to any point on the 

bold vertical line ( ) ( ) ( ), [ 1,0 , 1,1 )η σ ∈ 0ψ > .  

Proposition 1 shows that ψ  may increase, decrease, or remain constant, 

with distance from the city center, where, however, the latter case is less 
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probable than the others. We cannot prove that ψ  always changes monotonically 

with distance from the city center. 

 Two comments are in order. First, observe that the sufficient conditions in 

the premises of Proposition 1 are not restricted to constant elasticities, rather the 

elasticities are defined locally. Finally, observe that a unitary compensated 

demand elasticity of housing consumption and unitary elasticity of substitution in 

housing production play an important role in urban economics. They are used by 

Muth (1961), together with linear transportation cost, to derive the exponential 

density function.16  

We now turn to a policy issue associated with the optimal structure of the 

property tax. Suppose, that the spatial distribution of ψ  is efficient, Will a reform 

designed to increase the rates on land above the rate on structure marginally 

improve welfare? We will show that the answer is positive. To that end we 

assume that that initially (10) is satisfied and we increase [ ]zβ  at some arbitrary 

.z  the marginal benefit of such change is evaluated by partially differentiating the 

Lagrangian with respect to [ ]zβ  which yields 

 

( )' ' ' ' ' ' .
1 1 1

L R R Rc H c H c cφ ρφ φ ρ
β α α ψ
∂

= − + = −
∂ + + +

                                      (41) 

 

Substituting (26) into (41) and using (33), we obtain: 

 

0.
1

L R
n
µφ

β ψ
∂

= − >
∂ +

                                                                                     (42) 

 

It then follows that, given the optimal distribution of [ ]zψ , introducing a split-rate 

property tax system is welfare improving. Is it also true in the common case 

where (11) applies? This issue is explored in the next section 

                                                 
16  Papageorgiou and Pines (1989) provide a general characterization of preferences that generate constant 
compensated demand elasticity, including the case of unitary elasticity.  
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5. A prototype of the prevailing property tax and the 
split- rate tax reform 
 There are two common features characterizing the prevailing property tax, 

especially in the U.S. The first is that the tax applies to the value of the residential 

property as an inseparable bundle. Only in a very few cases, the tax rate on the 

(assessed) value of land is higher than on the assessed value of the 

improvement.17 The second feature is the uniformity of the tax rates across 

locations. Thus, (11) characterizes the most common property tax scheme where 

(12) characterizes some very few cases where the split-rate tax scheme is 

practiced. Implementing the scheme is a controversial issue that occupies the 

literature on property tax as elaborated upon in the introduction. Here, we will 

raise another reason for questioning its merit when the tax is uniformly applied 

over space. 

When the tax rate varies across location optimally, (42) represents the 

marginal benefit of increasing the tax on land locally. We have to integrate it to 

represent the marginal benefit of raising the tax on land marginally everywhere. 

When the tax rate does not vary across locations, we obtain similar, but not 

exactly the same, expression for the marginal benefit of raising the tax rate on 

land marginally, that is, 

 

( ) 01

bL Rdz
n

µ φ
β ψ
∂

= −
∂ + ∫                                                                          (43) 

 

This difference, however, would not be consequential, if µ  remains negative as it 

is in the preceding section. Unfortunately, we are unable to prove that, when the 

                                                 
17 Less than twenty cities in Pennsylvania are referred to as practicing the split-rate scheme and a 
few other places out of the U.S. (see Youngman and Malme (1994)).  
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tax rate is uniform across locations, 0µ <  as we were able to prove in the 

preceding section, where the tax rate varies across locations. Formally, the 

reason is that, in the preceding section [ ] 0zλ =  because, for any specific 

location z, [ ]zψ  appears only in equation (6) that is relevant to that specific 

location. In contrast, in the preset case, ψ  appears in (6) which refers to every 

location and, therefore, [ ]xλ  need not vanish. When [ ]xλ  does not vanish, the 

expression preceding (33) is not valid, and we cannot formally prove (33).  

One may be puzzled by this failure to reproduce the result obtained in the 

preceding section. It is well known and illustrated in Section 3 that, in our setting, 

Henry George’s single tax at a rate of 100% on the ADLR is not distortive, that is, 

it reduces welfare, measured in terms of the composite good, precisely by the 

same amount as the tax revenue. One, therefore, tends to expect that any reform 

that increases the property tax rate on land above the rate on the improvement 

enhances welfare.18 We suspect that our failure to reproduce the result derived in 

the preceding section is an illustration of the second-best principle that if one 

necessary condition for first-best is violated, the satisfaction of all the other 

conditions need not always be warranted. In this sense our discussion adds a 

new (theoretical) dimension to the controversy regarding the merit of the split-

rate tax scheme. 

 
6. Concluding comments 
 

The resource allocation distortion associated with the residential property 

tax in an urban setting has two distinct sources. The first is the very use of 

commodity taxation that generates a gap between MRS and MRT; the second is 

the uniform application of the tax spatially. The present paper sheds some light 

on the second source of the above distortion and the characteristics of the 

                                                 
18 Even E. S. Mills states that the split-rate scheme “…is theoretically attractive   ” but only 
“…practically worthless.” 
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optimal spatial structure of the tax rates, given the first distortion. It turns out, that 

the analysis suggested in this paper is also relevant to the dispute on the merit of 

the split rate property tax reform, which occupies the recent literature on 

residential property taxation. 

We explore these issues in a general equilibrium setup of a closed urban 

system of monocentric cities.19 We derive a condition for determining the 

(second-best) optimal spatial structure of the tax rates. In some cases we can 

use identify conditions for determining the spatial rate structure analytically, 

showing that the tax rate, ψ , can vanish, be positive or negative globally. Most 

probably ψ  need not always be monotone, though we did not identify conditions 

that generate this possibility. 

On a more general level, our discussion adds a new dimension to the 

controversy on the merit of the split-rate property tax reform. We suggest that 

when the property tax rate is uniform across location, raising the tax rate on land 

need not be welfare increasing; only when the spatial tax rate structure is 

(second-best) optimal, raising the tax rate is. This reflects the well known 

principle of second best: if one necessary condition for efficiency is violated, 

efficiency improvement need not follow from pursuing the attainment of another 

efficiency condition.20  

Even with all our model’s simplifications, it cannot provide a complete 

characterization of the optimal spatial tax structure analytically. Simulations are 

still needed to check cases where our formula fails to produce unambiguous 

results and to gain some notion on the importance of the spatial tax variation in 

terms of welfare gain. 

 
 
 

                                                 
19 By this we mean that all the resources of the urban system are used internally, whereas, in 
partial equilibrium analysis, resources are allowed to leak out without explaining how they are 
disposed of. 
20 We did not, however, produce a counter example where the introduction of a split rate tax 
structure reduces welfare.  
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